keyed cryptosystem - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

keyed cryptosystem - перевод на русский

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

keyed cryptosystem      
криптосистема с секретным ключом криптосистема с секретным ключом
RSA algorithm         
  • [[Adi Shamir]], co-inventor of RSA (the others are [[Ron Rivest]] and [[Leonard Adleman]])
ALGORITHM FOR PUBLIC-KEY CRYPTOGRAPHY
RSA cryptosystem; RSA encryption; Rivest-Shamir-Adleman; RSA algorithm; RSA Cryptosystem; Rsa encryption; RSA cipher; Branch prediction analysis attacks; Branch prediction analysis; Rivest Shamir Adleman; Rivest, Shamir, Adleman; Rsa Algorithm; Rivest-Shamir-Adleman Algorithm; Rsa algorithm; Rivest-Shamir-Adleman algorithm; RSA (algorithm); RSA public key cryptography; RSA (crypto); Rivest-Shamir-Adelson; Rivest-Shamir-Adelman; Rivest–Shamir–Adleman cryptosystem; Rivest–Shamir–Adleman; Rivest-Shamir-Adleman cryptosystem
(Rivest-Shamir-Adleman algorithm) алгоритм криптосистемы с открытым ключом Ривеста, Шамира и Адлемана, алгоритм криптосистемы RSA
public key cryptosystem         
  • digitally signed]] with Alice's private key, but the message itself is not encrypted.
1) Alice signs a message with her private key.
2) Using Alice's public key, Bob can verify that Alice sent the message and that the message has not been modified.
  • In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message. The security of the system depends on the secrecy of the private key, which must not become known to any other.
  • symmetric cipher]] which will be, in essentially all cases, much faster.
CRYPTOSYSTEM THAT USES BOTH PUBLIC AND PRIVATE KEYS
Private key; Asymmetric key algorithm; Public key algorithm; Public key; Public key cryptography; Asymmetric key cryptography; Public key encyption; Public key crytography; Asymmetric key; Asymmetric key encryption algorithm; Public key encryption; Public-key encryption; Public-key; Asymmetric key encryption; Asymmetric cryptography; Non-secret encryption; Asymmetric key algorithms; Asymmetric encryption; Keypair cryptography; Public Key Cryptography; Private key encryption; Public-key cryptosystem; Public key cryptosystem; Assymetric key cryptography; PubKey; Asymmetric-key cryptography; Asynchronous encryption; Public/private key cryptography; Asymmetric-key algorithm; Key pair; Keypair; Key Pair; Asymmetric crypto; Public encryption key; Asymmetric cryptosystem; Asymmetric cypher; Asymmetric cipher; Asymmetric algorithm; Asymmetric Algorithms; Public Key Encryption; Private Key Encryption; Secret-key; Key pairs; Asymmetric-key cryptosystem; Public key pair; Public-key encrytption; Asymmetrical encryption; Private keys; Applications of public-key cryptography
криптосистема с открытым (общедоступным) ключом, двухключевая (ассиметричная) криптосистема, криптосистема множественного доступа криптосистема с открытым (общедоступным) ключом, двухключевая (ассиметричная) криптосистема, криптосистема множественного доступа

Определение

RSA encryption
<cryptography, algorithm> A public-key cryptosystem for both encryption and authentication, invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. Its name comes from their initials. The RSA algorithm works as follows. Take two large {prime numbers}, p and q, and find their product n = pq; n is called the modulus. Choose a number, e, less than n and {relatively prime} to (p-1)(q-1), and find its reciprocal mod (p-1)(q-1), and call this d. Thus ed = 1 mod (p-1)(q-1); e and d are called the public and private exponents, respectively. The public key is the pair (n, e); the private key is d. The factors p and q must be kept secret, or destroyed. It is difficult (presumably) to obtain the private key d from the public key (n, e). If one could factor n into p and q, however, then one could obtain the private key d. Thus the entire security of RSA depends on the difficulty of factoring; an easy method for factoring products of large prime numbers would break RSA. RSA FAQ (http://rsa.com/rsalabs/faq/faq_home.html). (2004-07-14)

Википедия

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Как переводится keyed cryptosystem на Русский язык